In september gaven LyondellBasel en Covestro het officiële startsein voor de bouw van een circulaire stoominstallatie waarbij de bedrijven gebruik maken van hun eigen afvalwaterstromen. Daarmee vermijden de bedrijven niet alleen forse hoeveelheid CO2-uitstoot, maar ook de lozing van zoutwater op het oppervlaktewater. LyondellBasell spreekt tijdens Watervisie 2019, dat 14 februari wordt gehouden bij Heineken Zoeterwoude over zijn visie op water en energie.

Hoewel de circulaire economie vol in de belangstelling staat van de Rijksoverheid, valt het aantal projecten dat daadwerkelijk wordt uitgevoerd nog een beetje tegen. De investering die LyondellBasell en Covestro doen op hun terrein op de Rotterdamse Maasvlakte is in dit opzicht redelijk uniek te noemen en krijgt daarbij de nodige ondersteuning vanuit het Rijk. Senior Vice President Manufacturing Europe, Asia & International Jean Gadbois, van LyondellBasell bedankte tijdens de start van het project de overheid dan ook voor zijn steun. Dat neemt niet weg dat het bedrijf zelf ook behoorlijk zijn nek uitsteekt voor dit project dat potentieel 140 duizend ton CO2 en 0,9 petajoules energie per jaar kan besparen en voorkomt dat elf miljoen kilo zout in het oppervlaktewater terechtkomt.

Het bedrijf investeert 150 miljoen euro in het zogenaamde Circulair Steam Project (CSP) waar nog een nog niet eerder gebruikte combinatie van technologie wordt ingezet voor de productie van stoom, dat daarna in het proces wordt gebruikt voor de productie van chemische halffabricaten.

Verbranden

Op de site op de Maasvlakte wordt via een speciale technologie onder meer propyleen oxide en styreen monomeer (POSM) geproduceerd. Het is in zijn soort een van de grootste fabrieken ter wereld. De op de Maasvlakte geproduceerde chemicaliën zijn de bouwstenen voor producten als kleding, meubels, huishoudelijke producten en bouwmaterialen.

Uit het POSM-proces ontstaan twee soorten afvalstromen die tot nog toe worden afgevoerd naar de thermische behandelinstallatie van AVR. De eerste is een mengsel van verschillende looghoudende waterige stromen – een som van vijf interne afstromen uit de fabriek. Deze stroom wordt naar de eigen afvalwaterbehandeling gestuurd waar de in het water aanwezige peroxide in een caustic waste reactor wordt verwijderd. Daarna gaat de afvalstroom naar AVR. De tweede stroom betreft een tweetal brandbare afvalstromen, afkomstig van de Maasvlakte en afkomstig van de Botlek fabriek.

Aangezien het contract met AVR in 2019 afloopt, beraadden de twee eigenaren van de fabriek, LyondellBasell en Covestro, zich op het idee om de afvalstromen nuttig in te zetten in de eigen processen. Men startte een onderzoek naar de mogelijkheid om de twee deelstromen zelf te verbranden en de daarbij vrijgekomen energie nuttig in te zetten voor de productie van hogedrukstoom, die een energiebron is voor de Maasvlakte-fabriek.

Afvalwaterbehandeling

Twee van de vijf waterige afvalstromen uit de fabriek, wat ongeveer veertig procent is van de totale stroom, worden direct naar een nieuw te bouwen afvalwaterzuivering geleid. Om dit mogelijk maken, zullen Bilfinger en Veolia, een anaerobe en aerobe biologische voorzuivering bouwen die aansluit op de bestaande biologische zuivering van LyondellBasell en Covestro. Hiermee krijgt de bestaande biologische zuivering een aanzienlijk grotere verwerkingscapaciteit. In de anaerobe bio-reactor wordt het biogas geproduceerd dat later wordt gebruikt voor de stoomproductie. Het water gaat daarna naar een Moving Bed Bio-Reactor (MBBR), gevolgd door een dissolved air flotation stap. Daarna is het water schoon genoeg om naar de bestaande bioreactor te worden gestuurd om vervolgens in de haven te kunnen worden geloosd.

Stoomproductie

De overige waterige stroom, zo’n zestig procent van de afvalstroom, bevat het caustische water en de brandbare afvalstoffen. Deze stroom gaat naar een innovatieve droge verbrandingsoven waar samen met de brandbare afvalstromen, stoom wordt geproduceerd. Doordat de temperatuur in de verbrandingshaard boven de negenhonderd graden Celsius is, smelten de zouten of blijven als kleine, vaste druppeltjes in de rookgassen aanwezig. Het gesmolten zout stroomt via de wand naar beneden en wordt opgevangen. De zouten in de rookgassen worden afgevangen in een filter, na afgifte van energie voor stoomproductie in de boiler. Dit zout kan vervolgens, na behandeling, worden ingezet in bijvoorbeeld de beton- of glasindustrie.

Hoewel de details niet bekend worden gemaakt, is wel bekend dat het Duitse Oschatz de verbrandingsoven zal bouwen. Volgens LyondellBasell zal de oven in ieder geval zeer efficiënt zijn werk doen.

Planning

Inmiddels is de bouw van de installaties begonnen. De komende twee jaar zullen op het hoogtepunt ongeveer 350 mensen voltijd bezig zijn met de bouw om de installaties in 2020 te kunnen opleveren. Verwacht wordt dat de onderhoudsstop van de site volgend jaar kan worden gebruikt om de nieuwe installaties aan te sluiten op de bestaande installaties. De nieuwe installaties zullen uiteindelijk elf fulltime arbeidsplaatsen creëren.

 

Watervisie 2019

Energietransitie vraagt om waterstrategie

Met het Klimaatakkoord zet de industrie grote stappen in de energietransitie. Water is de belangrijkste energie- en grondstoffendrager in industriële processen. Daarom kijken industriële leiders steeds vaker naar de wisselwerking tussen water, energie en grondstoffen. Een integrale visie levert ze extra waarde op door (kosten)besparingen in het gebruik en terugdringing van emissies. Temeer omdat water als medium ook een rol kan spelen in circulaire ketens.

Ook benieuwd hoe een integrale visie op uw water, energie- en grondstofstromen u helpen bij uw economische en ecologische uitdagingen? Kom dan naar Watervisie 2019.

Heineken Nederland in Zoeterwoude is deze keer gastheer van het Watervisie Congres. De brouwer heeft zijn eigen watervisie vastgelegd in de Brewing a Better World strategie. Benieuwd naar de brouwerij? Dan kunt u voorafgaand aan het congres een rondleiding volgen. Wees er snel bij, want VOL=VOL.

Grolsch had in 2017 het laagste energie- en waterverbruik ooit in de brouwerij. Het reduceerde zijn energieverbruik met 5,6 procent ten opzichte van 2016. De reductie van het waterverbruik was 9,6 procent. Deze resultaten staan in het Jaarverslag Duurzaam en Verantwoord Ondernemen 2017, dat de brouwer vandaag publiceert.

Grolsch heeft de ambitie om een volledig CO₂-neutrale brouwerij te zijn in 2025: een brouwerij waarbij alle ingezette energie op duurzame wijze wordt opgewekt. Het doel is om alle elektriciteit en warmte uit fossiele brandstoffen om te zetten naar elektriciteit en warmte uit duurzame bronnen. In 2017 zijn opnieuw belangrijke stappen gezet op weg hiernaartoe. Circulair denken en handelen geldt daarbij als uitgangspunt.

‘Met het realiseren van het laagste energie- en waterverbruik in de brouwerij ooit hebben we een fantastisch resultaat bereikt’, vertelt Andrei Haret, Algemeen Directeur Koninklijke Grolsch. ‘Zeker als je je bedenkt dat we al vele jaren werken aan energie- en waterreductie. Het is steeds lastiger om op een eenvoudige manier verdere besparingen te behalen. Toch is het ons gelukt.’

Restwarmte terugwinnen

Grolsch heeft in 2017 nog een aantal andere resultaten bereikt op het gebied van duurzaam ondernemen. Zo heeft de brouwerij vanuit het ‘Grolsch Vakmanschap is Meesterschap Fonds’ vijf regionale projecten gesteund met een bijdrage van vijfduizend euro. Deze projecten zetten zich ieder in op het gebied van ondernemerschap, innovatie, duurzaamheid en karakter.

Ook in het productieproces van de brouwer zijn een aantal duurzame elementen toegevoegd. Zo worden de filters van de waterbehandelingsinstallatie gespoeld met water, dat vervolgen naar de afvalwaterzuivering gaat. Dit water wordt opgevangen en na een zuiveringsstap opnieuw gebruikt in de waterbehandelingsinstallatie. Verder wordt de restwarmte uit de boilers gebruikt om de koude vers waterstroom – zoals deze de boilers in gaat – voor te verwarmen. Op die manier bespaart de brouwer op aardgas. Grolsch heeft bovendien in 2017 een ontwerp gemaakt voor een warmtewisselaar in de schoorsteen. Hiermee gaat de brouwer vanaf dit jaar restwarmte uit de schoorsteen terugwinnen.

Preventieve behandeling van suppletiewater voor koelsystemen door middel van ontharden biedt een goed alternatief voor de curatieve chemicaliëndosering in het circulerende koelwater die nu veel wordt toegepast. Preventieve behandeling kan veel kosten en water besparen en de impact op het milieu aanzienlijk verminderen. Een rekentool toont de mogelijke besparingen op kosten en water voor drie realistische voorbehandelingsscenario’s.

Tekst: Nienke Koeman, Frank Oesterholt en Hans Huiting

De (proces)industrie gebruikt koelsystemen om lage-temperatuur-warmte weg te koelen. Vaak wordt een open recirculerend koelwatersysteem gebruikt dat warmte afvoert door water te verdampen in een koeltoren, in direct contact met de buitenlucht. Daarbij worden de stoffen in het koelwater, aangevoerd via het suppletiewater, geconcentreerd. Dit kan problemen geven met groei van micro-organismen, corrosie en zoutafzettingen (vaak kalkafzetting, scaling). Daarom wordt het geconcentreerde koelwater regelmatig gespuid en in de koeltoren conditioneringschemicaliën toegevoegd. Spuien leidt tot gebruik van relatief grote hoeveelheden water en conditioneringschemicaliën, meestal  een speciale mix die is afgestemd op de lokale situatie. Vooral dat laatste maakt het koelproces kostbaar en relatief ingewikkeld en veroorzaakt een grote impact op het milieu, ondanks de stijgende trend om biologisch  afbreekbare chemicaliën in te zetten.

Preventief. Binnen het TKI-watertechnologie programma heeft KWR samen met SABIC, Tata Steel, Brabant Water, Evides Industriewater en Pidpa een deskstudie uitgevoerd gericht op de verschuiving van het zwaartepunt van de curatieve conditionering van koelwater van chemische waterbehandeling in het koelsysteem naar een preventieve behandeling van het suppletiewater gebaseerd op vergaande ontharding. Dit heeft als primair doel het koelwater verder in te dikken en minder te spuien. Omdat een evenwicht met de buitenlucht wordt gevormd, zal de pH bij de lage hardheid stijgen en zullen naar verwachting veel minder chemicaliën nodig zijn om corrosie, zoutafzetting en biofilmvorming tegen te gaan. Bovendien zijn de gebruikte basischemicaliën voor het ontharden tijdens voorbehandeling minder schadelijk voor het milieu dan de conditioneringschemicaliën die nu curatief worden ingezet. Bij comfort koelwatersystemen, die mildere procesomstandigheden hebben, wordt koelwater al massaal preventief geconditioneerd door het voedingswater volledig te ontharden.

Drie opties

Met als voornaamste criterium minimaal waterverlies tijdens de voorbehandeling zelf zijn drie mogelijke scenario’s voor voorbehandeling geselecteerd. Scenario één bestaat uit met kationwisseling om calcium en magnesium te verwijderen en zo scaling te voorkomen, gevolgd door anionwisseling om naast corrosieve anionen ook opgelost organisch materiaal te verwijderen dat voeding vormt voor micro-organismen.

Scenario twee start met pellet-ontharding om calcium en magnesium te verwijderen, gevolgd door zandfiltratie om de pellets en een deel van de aanwezige micro-organismen te verwijderen  en opnieuw kationwisseling voor verdere ontharding. Scenario drie is gelijk aan  scenario twee met na de kationenwisselaar nog een anionenwisselaar voor verwijdering van organisch materiaal.

Rekentool

De onderzoekers onbtwikkelden de rekentool CaShCoW (Calculation Sheet Cooling Water) om de technische en economische haalbaarheid van suppletiewater voorbehandelingen en een toename van concentratiecycli door te rekenen en vergelijkt die met de bestaande situatie van behandeling en indikken. De tool berekent de effecten van de voorbehandeling en een toename van het aantal cycli op de samenstelling en scalingspotentie van het koelwater. Als indicatie voor de scalingspotentie gebruikt CaShCoW onder andere de Puckorius Saturatie Index, gebaseerd op de calciumcarbonaat verzadiging bij de evenwichts-pH van een open koelwatersysteem. Ook berekent de tool de investeringskosten (Capex) en operationele kosten (Opex) van de voorbehandeling om de totale kosten te vergelijken met de huidige kosten voor koelwaterbehandeling.

Beperking

De  rekentool geeft nog geen goede indicatie voor de potentie tot corrosie. Daarover kunnen wel kwalitatieve uitspraken worden gedaan op basis van de aanwezige zouten en de pH. Er is momenteel geen goede index om de mate en de specifieke verschijningsvorm van corrosie te voorspellen voor een open recirculerend koelwatersysteem zonder noemenswaardige hardheid (pH  9 – 9,5) Dat ligt veelal buiten de range van de indices.

Sabic Geleen

Om de bruikbaarheid van de tool te beoordelen, zijn twee praktijksituaties geïnventariseerd en doorgerekend. De eerste is een koelsysteem bij Sabic in Geleen, met een zink/fosfonaat programma voor koelwaterconditionering, en een concentratiefactor van circa negen. CaShCoW laat zien dat in dit geval geen van de drie voorbehandelingsscenario’s economisch voordeliger is dan de huidige conditionering. Vanwege de hoge concentratiefactor is de winst door waterbesparing eenvoudigweg te gering. Mocht Sabic in de toekomst redenen hebben om over te stappen op een conditioneringsprogramma zonder zink, dan biedt scenario 1, (alleen ionenwisseling) economisch het meest interessante alternatief. De waterkwaliteit is in dat geval dusdanig dat hoewel de indices een lichte neiging tot scaling voorspellen, zoutafzetting in de praktijk niet waarschijnlijk wordt geacht.

Tata Steel IJmuiden

Het koelsysteem bij Tata Steel in IJmuiden gebruikt voorbehandeld oppervlaktewater als suppletiewater het conditioneringsprogramma bevat verschillende organische componenten. Omdat het koelwater in een ander koelsysteem terecht kan komen, mag het chloridegehalte in het recirculerende koelwater niet te veel stijgen. Daarom is de maximale concentratiefactor hier 2,4. De rekentool laat zien dat als chloride niet een beperkende factor zou zijn, alle drie de alternatieve behandelingsscenario’s een aanzienlijke besparing van water en kosten zouden kunnen opleveren. Als de concentratiefactor van 2,4 naar 5 mag stijgen, kan 27 procent van het suppletiewater worden bespaard. Met scenario 1 zou in dat geval tot 47 procent op de kosten kunnen worden bespaard. Omdat de investerings- en onderhoudskosten voor pellet-ontharding aanzienlijk hoger zijn dan voor ionenwisseling, is de kostenbesparing voor scenario’s 2 en 3 lager, maar nog steeds ruim twintig procent. De waterkwaliteitsberekeningen laten zien dat het water ongeveer het verzadigingsevenwicht van calciumcarbonaat bereikt, dus scaling noch corrosie van koolstofstalen installatiedelen worden verwacht problemen op te leveren. Door de geringe huidige concentratiefactor zal een aanzienlijke besparing van water- en chemieverbruik kunnen worden behaald. Als bij Tata Steel het chloridegehalte verder mag stijgen, bieden alle drie de scenario’s duidelijk besparingsmogelijkheden.

Nieuwe inzichten

De toepassing van de rekentool op beide casebeschijvingen in deze studie heeft geleid tot een aantal nieuwe inzichten. In de eerste plaats is door toepassing van de rekentool aangetoond dat preventieve behandeling van suppletiewater door middel van ontharding, een goed alternatief kan zijn voor de huidige curatieve behandeling op basis van chemicaliëndosering in het circulerende koelwater. Vooral bij systemen met een laag aantal cycli (<5) en hoge kosten voor water en chemicaliën kan dat veel kosten en water besparen en de impact op het milieu sterk verminderen, onder andere omdat de chemicaliën die nodig zijn voor voorbehandeling een veel kleinere milieu-impact hebben dan de complexe koelwaterconditioneringschemicaliën die bij curatieve behandeling nodig zijn, maar na preventieve behandeling overbodig. Hoeveel besparing kan worden bereikt, is sterk afhankelijk van lokale omstandigheden zoals energiekosten en waterbeschikbaarheid. De rekentool kan deze besparing helpen voorspellen. Het scenario gebaseerd op kationwisseling en anionwisseling geeft de laagste kosten van de drie voorbehandelingsscenario’s omdat de pellet-ontharding in de twee andere scenario’s een hogere kapitaalsinvestering vraagt.

Scalingspotentie

Het effect van voorbehandeling op de scalingpotentie kan goed worden voorspeld. Hoewel gangbare indices soms aangeven dat nog lichte scaling kan ontstaan, is de praktisch afzetbare hoeveelheid calciumcarbonaat zeer laag. Voorbehandeling lijkt ook gunstig om groei van biofilm te verminderen, enerzijds door verwijdering van organische componenten, anderzijds door de hogere resulterende koelwater-pH, maar hierover en over de corrosiviteit is nog geen kwantitatieve uitspraak te doen. Naar verwachting treedt voldoende corrosie-inhibitie op omdat onder de sterk alkalische koelwateromstandigheden het carbonaatgehalte sterk stijgt en oplossen van metalen (behalve aluminium) drastisch onderdrukt  ten opzichte van de meeste huidige open koelwaters. De biofilmvorming en corrosiepotentie kunnen worden onderzocht in een pilot test volgens de NEN-ISO 16784-2 standaard. Deze standaard beschrijft hoe het effect van een behandelingsmethode op een open koelsysteem objectief en reproduceerbaar getest kan worden.

Vervolg

Als blijkt dat voorbehandeling niet alleen een positief effect heeft op de scalingpotentie, maar ook op corrosie en biofilmvorming, kunnen industrie en waterbedrijven samenwerken om deze milieuvriendelijkere behandeling van koelwater toe te passen en mogelijk op te nemen in de BREF (best available technique reference documents) voor koelwaterconditionering daterend uit 2001 Daarvoor is eerst meer praktijkervaring, kenniszekerheid en een onderbouwde en navolgbare “proof of concept” nodig, waarbij ook de rekentool verder gevalideerd kan worden.

Meer hierover kunt u lezen op de site van het TKI Watertechnologie

Masters of industry: Industriële koel- en ketelwaterbehandeling

Nienke Koeman is een van de twee sprekers tijdens de Masters of Industry bijeenkomst met het thema: Industriële koel- en ketelwaterbehandeling. Schrijf u hier in voor de bijeenkomst op 21 september bij Pathema in Tilburg.

Conditionering van koel- en ketelwater voorkomt problemen met scaling, fouling en corrosie. Tot nog toe worden hiervoor veel chemicaliën gebruikt. Min of meer toevallig stuitte Pathema op een manier om koelwater op mechanische wijze te conditioneren. Kleinere, zogenaamde comfortkoelingen, worden  standaard al behandeld, maar bij grote koelsystemen in de petrochemie of de staalindustrie gebeurt dit nog niet. Toch kan ook voor dit soort systemen conditionering van het water voordelig zijn.

Tijdens deze Masters of Industry toont Mark Boeren (directeur Pathema en Water Innovator of the Year 2017) hoe de Industrial Vortex Generator koelwater kan behandelen zonder inzet van chemicaliën. Nienke Koeman (onderzoeker bij KWR) geeft inzicht in de resultaten van het onderzoek dat zij deed naar de conditionering van koelwater bij open recirculerende systemen.

Informatie over het programma en aanmelden kunt u vinden via www.mastersofindustry.nl.

mastersofindustry

Hoewel normaal gesproken de temperaturen in een condenser niet boven de veertig graden Celsius uitkomen, zijn uitschieters naar boven niet uitzonderlijk. En juist die uitschieters zorgden er in het verleden voor dat de hydrofobe coating van een condensor zijn functie verloor. De coating kan redelijk eenvoudig worden opgedampt op een warmtewisselaar. Bovendien volstaat het een zeer dunne laag aan te brengen op het hydrofiele effect te krijgen. Hierdoor verliest het gecoate materiaal zijn geleidende eigenschappen nauwelijks.

De onderzoekers verwachten dan ook een grote bijdrage te kunnen leveren aan de verduurzaming van energieproductie en -terugwinning.